Tensor

Tensors are N-dimensional data matrix with homogeneous type. Supported types are:

  • Unsigned integers: uint8, uint16, uint32, uint64
  • Signed integers: uint8, uint16, uint32, uint64
  • Floating point numbers: float16, float32, float64

Note: 1-D tensors are visualized as bar charts.

Components and APIs

Primary component: tensor

Python APIs: log_tensor,

Rust API: Tensor

Simple Example

"""Create and log a tensor.""" import rerun as rr from numpy.random import default_rng rng = default_rng(12345) # Create a 4-dimensional tensor tensor = rng.uniform(0.0, 1.0, (8, 6, 3, 5)) rr.init("rerun_example_tensors", spawn=True) # Log the tensor, assigning names to each dimension rr.log_tensor("tensor", tensor, names=("width", "height", "channel", "batch"))

1-D Tensor Example

"""Create and log a one dimensional tensor.""" import rerun as rr from numpy.random import default_rng rng = default_rng(12345) # Create a 1-dimensional tensor tensor = rng.laplace(0.0, 1.0, 100) rr.init("rerun_example_tensors", spawn=True) # Log the tensor, assigning names to each dimension rr.log_tensor("tensor", tensor)